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Abstract: In this paper, based on Jumarie type of Riemann-Liouville (R-L) fractional derivative and a new
multiplication of fractional analytic functions, the fractional differential problem of four types of fractional
trigonometric functions is studied. We can obtain fractional derivative of any order of these four types of fractional
trigonometric functions by using fractional geometric series. Moreover, our results are generalizations of traditional
calculus results.

Keywords: Jumarie type of R-L fractional derivative, new multiplication, fractional analytic functions, fractional
trigonometric functions, fractional derivative, fractional geometric series.

I. INTRODUCTION

Fractional calculus is an extension of ordinary calculus, which has a history of more than 300 years. Fractional calculus
with any real or complex derivative and integral originated from Euler’s work, even earlier than Leibniz’s work. In recent
years, the application of fractional calculus in many different fields such as physics, mechanics, mathematical economics,
viscoelasticity, biology, control theory, and electrical engineering [1-13].

However, the definition of fractional derivative is not unique. Commonly used definitions include Riemann-Liouville (R-
L) fractional derivative, Caputo fractional derivative, Grunwald-Letnikov (G-L) fractional derivative, Jumarie’s modified
R-L fractional derivative [14-18]. Because Jumarie type of R-L fractional derivative helps to avoid non-zero fractional
derivative of constant function, it is easier to use this definition to connect fractional calculus with classical calculus.

In this paper, based on Jumarie’s modified Riemann-Liouville (R-L) fractional calculus and a new multiplication of
fractional analytic functions, we mainly use fractional geometric series to find fractional derivative of any order of the
following four types of fractional trigonometric functions:

[1—1%0s,(0%)] ®, [1 — 2r®cos,(6%) + r2¥]®a -1,
[r%sing, (0%9)] ®, [1 — 2r%cos, (0%) + r?*]® (-1,
[1+47%05,(0%)] ®g [1 + 2r%cos,(6%) + 1r?%]®a D),

[r%sing, (0%)] ®, [1 + 2r%cos, (0%) + r?*]® (-1,

Where 0 < a < 1 and |r*| < 1. In fact, our results are generalizations of traditional calculus results.
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Il. PRELIMINARIES
Firstly, we introduce the fractional derivative used in this paper.

Definition 2.1 ([19]): Let 0 < @ <1, and 6, be a real number. The Jumarie’s modified Riemann-Liouville (R-L) a-
fractional derivative is defined by

6 f(©)=f(60)

(,06)1f (6)] = r(1 @) do feo 6- t)“o dt, (1)
where T'( ) is the gamma function. On the other hand, for any positive integer p, we define (gng‘)p[f(e)] =
(6,08)(6,08) (9,06 )[f (6], the p-th order a-fractional derivative of £ (6).

In the following, some properties of Jumarie type of R-L fractional derivative are introduced.

Proposition 2.2 ([20]): If a, B, 8,, c are real numbersand § = a > 0, then

(0,05)1(6 = 60)F] = £ 2202 (6 — 6P, %)
and
(6,08)[c] = 0. ?)

Next, we introduce the definition of fractional analytic function.

Definition 2.3 ([21]): If 6, 8,, and a,, are real numbers for all k, 8, € (a,b), and 0 < a < 1. If the function f,:[a,b] - R

can be expressed as an a-fractional power series, i.e., f, (%) = Zkzom (6 — 6,)** on some open interval containing

6,, then we say that f,,(6%) is a-fractional analytic at 8,. Furthermore, if f,:[a, b] - R is continuous on closed interval
[a, b] and it is a-fractional analytic at every point in open interval (a, b), then £, is called an a-fractional analytic function
on [a, b].

In the following, we introduce a new multiplication of fractional analytic functions.

Definition 2.4 ([22]): Let 0 < @ <1, and 6, be a real number. If f,(6%) and g,(6%) are two a-fractional analytic
functions defined on an interval containing 6, ,

fe(0%) = Eico s (6 = 00)™, @
9a(6%) = B0 ponrs (60 = )™ . 5)
Then we define
f2(0)®¢ 9o (0%
= 0t (0 = 00" ®c Tico iy (0 = 00)™
= Zo e (Zneo (o) Gnmbm ) (6 = 80" ©)
Equivalently,
(0B 9o (67)
= S0 (i 0 - 0)7) " @ N (i (0 - 0))
= Xn=o (Zm 0( )a”‘mbm) (F(oc+1)( = 00)" ) ' )
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Definition 2.5 ([23]): If 0 < a < 1, and @ is a real variable. The a-fractional exponential function is defined by

@ oo gna Cve 1 1 « Qqn
Eq(6%) = Xn=o [(na+1) Ln=o n! (F(a+1) o ) ’ ®)

On the other hand, the a-fractional cosine and sine function are defined as follows:

a o (_1)’(9271(1 _ © (_l)n 1 « Rq2n
€05 (6%) = Xn=o rna+1) Ln=o 2n)! (I‘(a+1) g ) ' ©)
and
. @ v (-1)nen+a we (D 1 o ®Rq (2n+1)
$ing (6%) = Xn=o r(@n+)a+1) Ln=o (2n+1)! (F(a+1) g ) : (10)

Definition 2.6 ([24]): Let0 < a <1, and f,(0%), g,(6%) be two a-fractional analytic functions. Then (fa(ea))%" =

[ (09, -+ Qq f,,(0%) is called the nth power of £, (6%). On the other hand, if f,(0%)®, g.(8%) = 1, then g,(0%) is
called the ®,, reciprocal of £, (6%), and is denoted by (fa(ea))®“(_1).

Definition 2.7 ([25]): Let0 < @ < 1, i = v—1,and £,(6%), g,(6%), po(0%), q,(6%) be a-fractional real analyticat 6 =
6,. Let z,(0%) = f,(6%) +ig,(6%) and w,(6%) = p,(6%) + iq,(0%) be complex analytic at § = 8. Define

24 (09)® 4 We (6%)
= (f2(6%) + 1 9o (0%))®4 (o (0%) + i q,(6%9))
= [fu(0)®u Pa(0%) = 94 (09)® 4 4 (0D)] + i[f(0)®4 40 (0%) + 9u(0F) R P (6%)]. (11)

Moreover, we define

)

@2
1269, = 2698, 72 @D]° ) = [ (09)1%0 + [g, (610 ?]
Definition 2.8 ([26]): The smallest positive real number T, such that E, (iT,) = 1, is called the period of E, (i60%).
I1l. MAIN RESULTS

(12)

In this section, we will find fractional derivative of any order of four types of fractional trigonometric functions. At first,
three lemmas are needed.

Lemma 3.1 (fractional geometric series): If 0 < « < 1 and |Z“(9a)|®a < 1, then

[1— 2, (09)]® D = T2 (2,(69) " . (13)

and

_ . ®a
[1+ 2, (69)]® D = 3% (=1)"(2,(6%)) " . (14)
Proof Since |za(9“)|®a < 1, it follows that

[1 - 2,(09)]®¢ Xiomo(24(6) %"

= [1 = 2,(0)1@x Jim Xo(z (0))""
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= lim [[I—Za(H“)]®a ﬁ:o(za(ea))%n

m-—oo

lim [1 _ (Za(H“))®a (m+1)]

m—oo
=1.

Therefore,

[1— 2, (69)]®a D = $2_ (2, (6%)) "
Similarly,

[1 4+ 2, (09)]®¢ izo(—1D™(2,(69) %"

=[1+2,(69]Q, 1}11320 erzl:o(_l)n(za(ea))&ln

= lim [[1+ 2,(09)]®¢y T o(—1)"(2(69)°*"

m-oo

= lim |[1 = (-2,(6%)]®« leo(_za(ea))éban

m-—oo

m-oo

= lim |1 - (_Za(ea))®“ (m+1)]
=1.
It follows that

[1 + 2, (09)]® D = $2_ (=1)"(2,,(6%))®*" .

Lemma3.2: Let 0 < a < 1and|r*| <1,then

[1—7r%c0s,(0%)] ®, [1 — 2r%cos, (%) + r2¥]®a -V = ¥ ¥ s, (nH%).

And
[r%sing (09)] ®, [1 — 2r%c0s,(8%) + r2*|®a -V = y*_ynegin (nh%).
Proof Let z,(0%) = r*E,(i0%), then
12, (09)]g, = Ir“Ea(i0)]g = Ir*l <1.

By Lemma 3.1,

[1— r%E, (i9%)]® D = T2 (rE, (i0%)) %" .
Hence,

[[1—7%c0s,(6%)] — ir“sina(G“)]®a v

= T T, (inf%) .
It follows that

®q (-1)
[[1—7%0s,(89)] + ir®sing (6%)] ®q [[[1 — 1%05,(0%)]®2 + [r“sina(e"‘)]@az]]

= Yo T 05, (NO%) + i Y g " sing (n6%) .

Novelty Journals

Q.ed.

(15)

(16)

A7)

(18)

(19)

(20)
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Therefore,
[[1—7%C0s,(6%)] + ir%sing (0%)] @ [1 — 2r%c0s, (%) + r2*]®a -1
= Yo T"%cos,(nO%) + i Y o T"%sin, (n6%) . (21)
Thus,
[1—7%c05,(0%)] ®, [1 — 21r%c05,(6%) + 1r2¥]®« -V = ¥=_ o5, (nH%).
And

[r%sing (09)] ®, [1 — 2r%c0os,(6%) 4 r2*|®a D = y*_ ynegin (nh%). Q.ed.
Lemma3.3:If 0 <a <1and|r% < 1,then
[1+7%c05,(0%)] ®g [1 + 2r%c0s,(6%) + r2%]®a "D = ¥=_ (—1)""%cos,(n0%). (22)
And
[r%sing (09)] ®, [1 + 2r%cos,(8%) 4+ r?*]®a D = ¥ (1) sin,(nh%). (23)
Proof Let z,(60%) = r*E,(i6%), then

12, (09)]g,, = Ir*Eq(i09)]g, = Ir"l <1. (24)
Using Lemma 3.1 yields
[1+7E,(109)]% D = 52 (—~1)"(r“Eq(i69) " . (25)
Then
[[1 +r%cos,(0%)] + ir“sina(e"‘)]% D _ Yo o (DM E, (in6%) . (26)
Thus,

®q (-1)
[[1+7%c0s,(8%)] — ir®sin, (69)] ®, [[[1 + 1r%c0s,(0%)]®? + [r“sina(e"‘)]‘g’azﬂ
=Y (=)™ ¥ cos, (nO%) + i Yo o(— D)™™ sin, (n6%) . 27)
It follows that
[[1+7%c0s,(8%)] — ir®sing (0%)] @ [1 + 21%c0s,(0%) + 1r2*]®a 1)
= Yn=o(=1D)"1™cos,(nO%) + i Yy_o(=1)"r"*sin, (n6%) . (28)
Hence,
[147r%c05,(0%)] ®, [1 + 2r%cos,(0%) + r2¥]®a ("D = ¥ _ (1) "% cos,(nO%).
And
[r%sing (0%)] ®, [1 + 2r%c0os,(0%) + r?*]® D = —¥= (—1)"r"5in, (n6%). Q.ed.

Theorem 3.4: Suppose that 0 < a < 1, |[r*| < 1, and p is any positive integer, then

( OD[‘,")p [[1 —1%c05,(0%)] ®, [1 — 2r%cos,(8%) + r?%]®« ('1)] = Yo ,nPr™@cos, (n@“ +p- T“) . (29)

4

( 003)” [[r“sina(Q“)] ®, [1 — 2r%cos, (0%) + rz"‘]®“(‘1)] =% nPr*sin, (ne"‘ +p %"‘) , (30)
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( OD;;)" [ [1 4 1%c0s,(69)] ®, [1 + 2r%cos,(0%) + rz"‘]®“(‘1)] =Y (=)™ nPr"®cos, (nG“ +p TT:") , (31)
and

( ODg)" [ [r%sing (0%)] ®, [1 + 2r%*cos, (0%) + r?¥]®a (‘1)] = =Y (—1)™nPr™¥sin, (n@“ +p TT:") : (32)
Proof By Lemma 3.2,

( ODg)” [[1 —1%05,(0%)] ®, [1 — 2r%*cos,(8%) + rza]®a(‘1)]

Pryoo
= ( ODg‘) D o™ cos, (n8%)]
o TIZ
=Y onPr*®cos, (n@“ +p -:) .
Similarly,

( ODg)p [[raSina(ea)] ®a [1 - ZTaCOSa(Ha) + r2“]®u -1

= (oD§)" [Sizo ™ sing (n6)
= Yo nPr*sin, (n@“ +p %"‘) .
By Lemma 3.3, we have
( ng)p [ [1 4 17%c05,(0%)] @, [1 + 21r%c05,(0%) + 12%]®a (‘1)]
= (0D§)" [Zi=o(=1)"r"cos, (n6)]
=Y (=1)"nPr™®cos, (n@“ +p 2—“) .
And
( ODg)” [ [r%sing, (0%)] ®, [1 + 2r%cos,(8%) + r?*]®a (‘1)]
= (0D§) [~ Zioo(~D)"rsing (n§ )]
= — Yo o(=1)"nPr"%sin, (nQ“ +p %") . Q.ed.

IV. CONCLUSION

In this paper, based on Jumarie type of R-L fractional derivative and a new multiplication of fractional analytic functions,
we use fractional geometric series to find fractional derivative of any order of four types of fractional trigonometric
functions. In addition, our results are generalizations of classical calculus results. In the future, we will continue to use
Jumarie type of R-L fractional calculus and the new multiplication of fractional analytic functions to solve the problems in
applied mathematics and fractional differential equations.
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